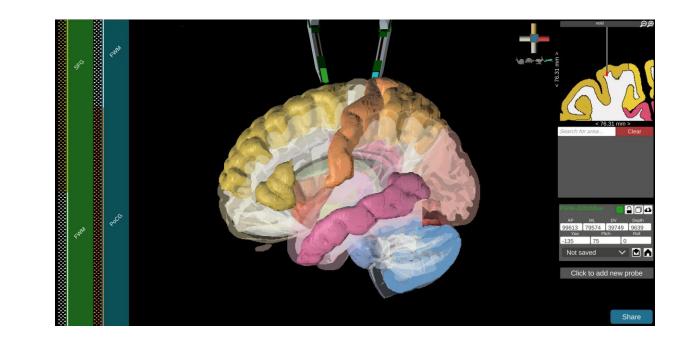


PINPOINT

UNITY FOR HUMANITY 2025 PITCH DECK



What is **Pinpoint**?

Interactive 3D visualization and automation tools for neuroscience research and neurosurgery

Available for free on the web, desktop, and handheld consoles

Demo Video: https://youtu.be/io03ATeKapc

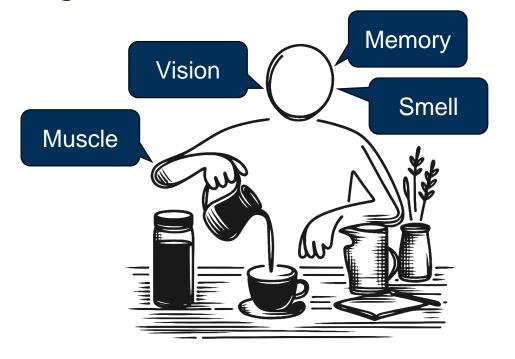
Human brain atlas with Neuropixel electrophysiology probes.

Our Goals with this Grant

Automation

Expand Access

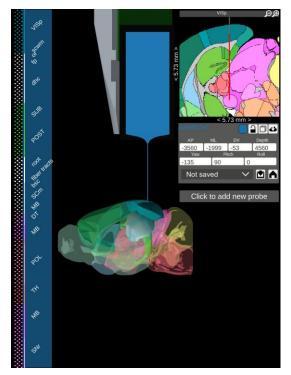
Develop an automated platform for reproducible neurosurgical procedures, reducing variability and improving the efficiency of experimental workflows. Expand access to large-scale neuroscience research by offering free, web-based tools for experiment planning, execution, and education.


Modern neuroscientists need tools to study the whole brain

Neuroscientists now recognize that **neurodegenerative diseases**, such as Parkinson's and Alzheimer's, affect the entire brain. Understanding these disorders and the **large-scale complex circuits** they impact requires techniques that scale up to measure neural activity **across the whole brain**.

Why do we need new tools?

Human behavior engages multiple regions of the brain...


... but current tools only help with studying individual regions

What can Pinpoint do today?

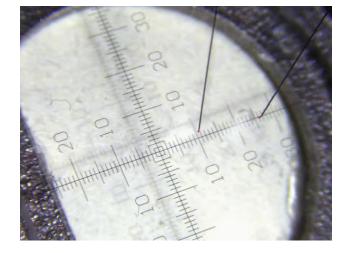
Intuitive 3D planning with in-depth surgical information

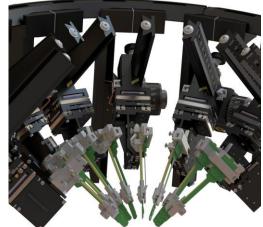
Repeatable surgeries with researcher-assisted robotics

Robotic manipulator -

Following a plan defined in Pinpoint

The Future is Fully Automated

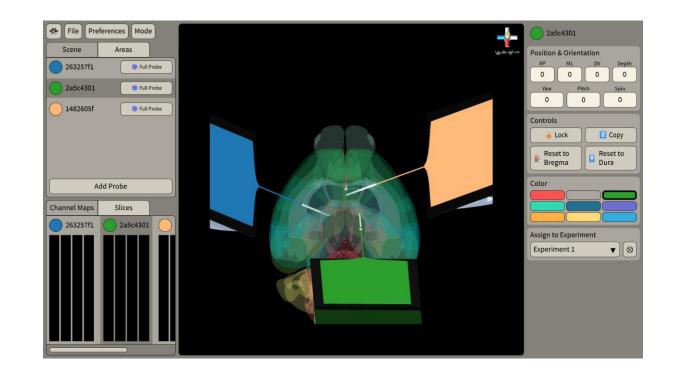

Automated surgeries **reduce human error** and **increase efficiency**, enabling neuroscientists to **scale up their work to the whole brain**, unlocking studies and surgeries previously deemed impossible.



Aim 1: Automation

We will develop computer vision assisted systems to enable unattended surgery.

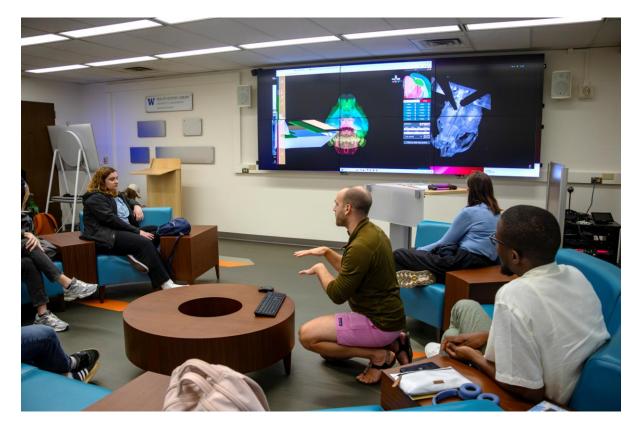
This will **reduce human error** and enable **scalable parallelization** of surgery procedures, required for working with the whole brain.


(*Right*) Parallax computer vision tracking system (probe tips marked with red crosses). (*Left*) New Scale MPM rig.

Aim 1: Automation (cont.)

Develop intuitive interfaces to plan and automate unattended surgeries.

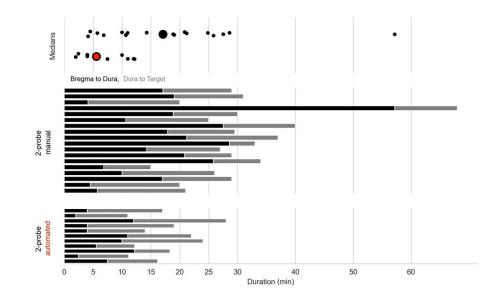
Change the interaction paradigm for neuroscience tools, emphasizing digital twinning and robotic automation.


Planned future interface for Pinpoint (using UI Toolkit).

Aim 2: Expanding Access

Bring our free, web-based tools for experiments, surgeries, and education to the community.

Share our work at **conferences and workshops** and integrate them into the **classroom** for the next generation. Feedback from community use and user studies drive our development plan.


Dr. Birman teaching Pinpoint to researchers at the Allen Institute 2024 Neuropixels and OpenScope Workshop.

How much does automation help?

Using data from experiments in rodents:

- One probe takes about 15 minutes to implant.
- Manually, this process scales linearly: two probes take 30 minutes, etc.
- With automation, the process is parallelized: any number of probes can be inserted in the same time window.
- In our data: the median implant time for automation (red dot) is significantly lower than manual implants (black dot).

Electrophysiology setup timing in a rodent neuroscience research lab.

Pinpoint's Impact

Improve surgery ethics and safety by **reducing human error** through automation. **Enables whole-brain studies** essential for addressing neurodegenerative diseases.

Open-source, web-based system **democratizes access** to cuttingedge neuroscience tools for education. The project has also fostered software engineering **research for undergraduates**.

Introduces **advanced robotics** and computer vision techniques to neurosurgery. These will **boost the efficiency and reproducibility** of smaller-scale operations as well.

Project Timeline

	2025 Summer	2025 Fall	2025 Winter	2026 Spring	2026 Summer
Automation system					
UI and hardware integration					
Scientific outreach (conferences)					
Education outreach					
Evaluation and Adjustments					

Grant Budget Allocation

We are requesting \$100,000 for salary support for Daniel Birman and Kenneth Yang for software development and support and outreach.

Source	Item	Description
80% Unity for Humanity	Aims development	DB working at 5% effort KJY at 100% effort for the duration of the project.
20% Unity for Humanity	Support and outreach	Running workshops through the Allen Institute, collaborating with researchers at universities and industry partners, publishing papers, and presenting at conferences.
Allen Institute	Maintenance	DB 15% effort
Allen Institute	Cloud deployment costs	AWS deployment (EC2 instance and S3 storage)

Sponsors and Grants Who Have Funded Us

Washington Research

F O U N D A T I O N

 \approx \$50,000 post-doctorate and undergraduate fellowship

 \approx \$50,000 with Simons Foundation

\$11,500 through the Shenoy Undergraduate Research Fellowship

≈\$20,000

W

UNIVERSITY of WASHINGTON

\$10,000 through the Mary Gates Undergraduate Research Scholarship

We are the Virtual Brain Lab

Daniel Birman, PhD

Software Engineer Allen Institute for Neural Dynamics

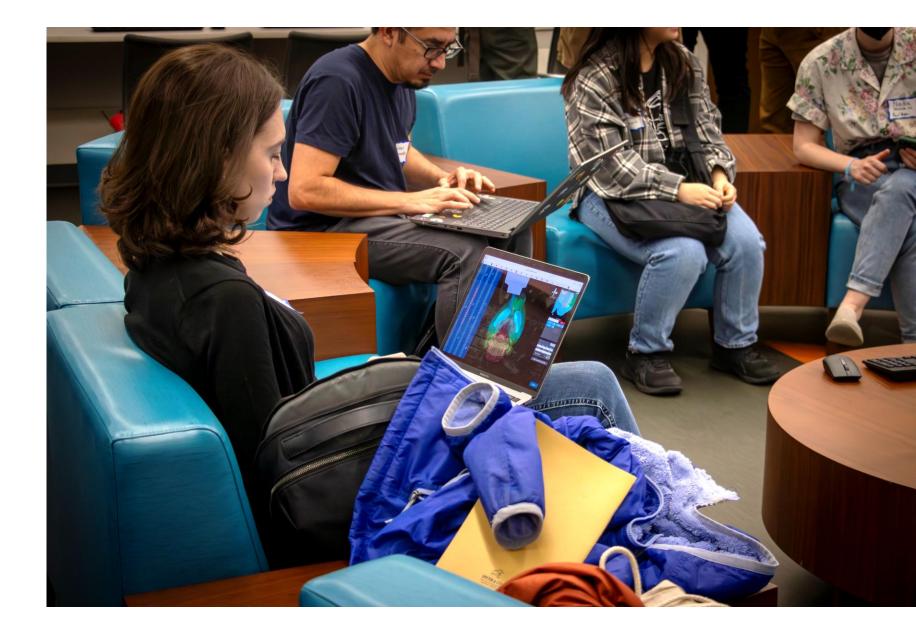
Kenneth J. Yang

Computer Science University of Washington ('25)

- We develop 3D visualization tools for experimenting with, exploring, and simulating brains.
- All projects are open-source on <u>GitHub</u>.
- We foster undergraduate research:

Kenneth Yang, Jasmine Schoch, Qiqi Liang, Selina Li, Kai Nylund

THANK YOU


Product Website: https://pinpoint.virtualbrainlab.org

Our Websites: https://virtualbrainlab.org https://www.allenneuraldynamics.org/

ALLEN INSTITUTE for NEURAL DYNAMICS

Contacts: daniel.birman@alleninsitute.org kjy5@uw.edu

